
Best
Available

Copy

AD-A284 924

Scientific and Technical Report

Final Technical Report for

Design of a Parallel Object D I
September 26, 1994 StSEP 0 31994

Sponsored
by

V SEP

Advanced Research Projects Agency (DOD) F
Defense Small Business Innovation Research Program

Issued by U.S. Army Missile Command Under

Contract # DAAH01-94-C-R089

Name of Contractor Principal Investigator:
Scientific Computing Associates, Inc. Daya Atapattu
Business Address:
One Century Tower Phone Number:
265 Church Street(203)777-7442
New Haven, CT 06510-7010 Short Title:
Effective Date of Contract: Parallel Object OrientedFebruary 23, 1994 Programming Language

Contract Expiration Date:
September 27, 1994
Reporting Period:
February 23, 1994 - August 27, 1994

DISCLAIMER

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either express or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Thi3 docu.Zento b1s been approved

fand sale; its

distribution os unis ,e

Ii 94-31213
"i914cill~ll/lH~ll.Wt

Form Approved

REPORT DOCUMENTATION PAGE OM ,N. o07 ,
,,qtAfqIqGapq . n O I~WlfqW I t.4 I1 IW~to '@ I~ n llm~O~ 14 O , Ilf ii I# i ue .itmi l0A IW Sm I O

aoure,0,, .fatumeo•a fo nl fat .t.,,a %,oi-. fmivten. to 101•W .a.4mW, OOOU an" ,m "a
MIo .S 1 0 4. A d0- 1 ,. V A t0 1or .f o 4 t o O O .4t o 6 4 M Wm qN I I W i O8 " R ecoft o t ' W I. 1W t owdl g ta I

I I. AGENCY USE ONLY (LvoJv* blank) 2. REPORT DATE J REPORT T'YPE AND DATrES COVERED

194 Sep 26 Final 2/23/94 to 9/27/94

. T SUnE S.RFNDINGNUMBERS

Design of a Parallel Object Oriented ProgrammingLagug DAARO 1-94-C-R089

IDya Atapattu (Principal Investigator)

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) S. PERFORMING ORGANIZATION

SclentIfte Computing Associates Inc. REPORT NUMBER
One Century Tower

265 Mhurch Street SCADAAI1OI-94-C-R089-0002
Rew naven, CT 06510

9. SPONSORINGI MONITORING AGENCY NAME(S) AND AODRESS(US) 10. SPONSORING i MONITORING
AGENCY REPORT NUMBER

ti. S. Army I'9•lsse Command

AHSI-RD-PC-.JB
Redstone Arsenal, AL 35898-5280

It. SUPPtIEMENTARY NOTES

12a. OISTRINUTION/ AVAILA-BILITY STATEMENT 12b. OISTRIBUTION CODE

13. ABSTRACT (Maxemtum2OO worci)

obJe,'t-oriented programming techniques have become a vital part of modern software
enrcin':'rinq. Most large new commercial software products are designed today using object,
oriented principles along with supporting development environments and tools. Such
mpthodolocgy Is particularly appealing for parallel computing, where there is great need
for approaches capable of simplifying the programming task and producing high quality
software more quickly. In this project we have carried out research that will lead to a
new parallel object-oriented language based on C++.

The nfw lanc,1tIr!, C+4b-Linda®, is a novel combination of the most widely used object-
oriented language and a successful environment for parallel computing that supports a
virtual shared memory model for process interaction. This combination Is an especially
ippropriate one because Linda's memory model is naturally object-oriented, enabling a
seamleqss (design that is completely consistent with object-oriented methodology. In this
Phase I project, we have carried out research to understand the basic issues underlying
parallel object-oriented languages, and we have created a preliminary design for C++-
Linda. In a future Phase II project, we plan to develop a prototype implementation that
will sqrve as a guide for eventual commercialization.

14. SUSECT TERMS is. NUMERe o- 0A4S,
20

Parallel computing, Programming languages, Object-oriented 16. PK C004
languages, Linda, C-H--Linda, C+--

I!. iCURTY CAS11ICATO 1 . SECURITY CLASSIFIZAVlON 19. S1CURI1lY -- SIIETO -0 LIP-t TO OFABTRC

~ii~ !~T "I *~Cf:.;?: II.€~I.A•f llFICA lION . I•ATOOfAIlUTRt ard OF THIS PAGE OF AGTIR'CT

unclassified -UrcIassifiled uncl assified SAR
"NSN 7540-01-290-S500 Standard Form I"• JRa. 2-O91

flap 9 1911toe

Final Report

Contract Number: DAAH01-94-C-R089, ARPA SBIR Program

Design of a Parallel Object-Oriented Programming

Language
hcce-!on For

Scientific Computing Associates, Inc(. r':T1 CR,&I

One Century Tower Erm2 ,
265 Church Street

New Haven, CT 06510-7010
Dy !

Daya Atapattu, Principal Investigator
A,,it. , jy Codes

Phone: (203) 777-7442 Email: atapattusca .t AV dor

Septemiber 27, 1994

1 Introduction

This project undertook the task of producing a design for an object-oriented parallel lan-
guage. In particular, we proposed that Linda® I technology be combined with an object-
oriented language to achieve this objective. This report presents the results of our Phase I
work.

We found that Linda's approach to toe coordination of parallel processes is a good concep-
tual match to the object-oriented model of computation. A running object-oriented program
can be regarded exactly as a collection of persistent, heterogeneous, evolving objects contain-
ing information. This is completely consistent with the view taken in Linda, where processes
interact through evolving data objects (called "tuples") residing in a logically-shared asso-

ciative memory called tuple space. When a process has information to communicate to other
processes, it generates a tuple and drops it into tuple space. Processes that need information
read or withdraw tuples to obtain it. The content of tuples is arbitrary (supporting essen-
tially the full range of data types in any underlying base computational language such as C,
FORTRAN or C++), and the means of access is quite general, permitting discrimination

1Linda is a registered trademark of SCIENTIFIC Computing Associates, Inc.

I

I based on structure, or content, or both. As a result, it is natural to frame communication in a
parallel object-oriented program directly in terms of tuples. In this project, our attempt has
been to generalize Linda's tuples into abstractions of objects from object-oriented technol-
ogy, thus providing the basis for an extremely powerful and natural parallel object-oriented
programming language.

Our task for Phase I of the SBIR was to study the design of a parallel object-oriented
language. ()ur specific objectives were to:

[] 1. Determine the most appropriate base object-oriented computation language;

2. Design a tuple space structure supporting object-oriented programming data abstrac-
tions;

3. Examine the relationship of class abstraction (including the concept of inheritance) to
the tuple space model; and

4. Identify the key issues underlying an efficient implementation of the proposed Linda
parallel object-oriented programming design.

We started by studying other research projects that are involved in designing parallel
object-oriented languages. We next spent a considerable amount of time in evaluating the
choice of base language. Following this, we carefully examined Linda's tuple space struc-
ture in the context of the practices of object-oriented programming. Finally, we created a
prototype design for a C++-Linda language which should provide a very natural and ef-
fective syntax and semantics and which should be both consistent with the principles of
object orientation and implementable efficiently. In summary, we accomplished completely
the objectives of the Phase I project.

In the balance of this report, we describe our work in more detail. We begin with
discussions of object-oriented programming methodology and Linda's virtual shared memory
technology. These focus especially on the management of software complexity using object-
oriented technology and the achievement of increased performance from parallelism, and
they include brief comments on several other research efforts in this area. Following this, we
describe the work on each of the four stated objectives. Finally, we go through a detailed
description of the prototype design for the C++-Linda language.

2 Parallel Object-Oriented Paradigm

In recent years, object-oriented programming has emerged as a way of reducing the com-
plexity of design and development of software and of enhancing software reuse. The basic
components of object orientation can be listed as encapsulation, abstraction and polymor-
phism. Encapsulation groups an object's state (data) and operations (functions) and pro-
vides only a well-defined interface to an object; the program does not depend on hidden

2

I
I

details. Abstraction simplifies program design by providing a mechanism to group similar
objects together. Polymorphism provides a way for abstractions to overlap and intersect.

Parallel computing requires much of the parallel programmer. This programmer must
manage the full range of complexity facing the programmer of sequential computers. In
addition, issues unique to parallel computing must be addressed. These issues include:

1. Process management

2. Synchronization

3. Interprocess communication
A programming environment for parallel computing must address each of these matters.

Most approaches tightly bind the management of the parallelism with the computation into
a single programming environment. This forces the programmer to manage simultaneously
Iboth components of the parallel programming task, which complicates the programming
effort.

We believe that a better approach is based on coordination languages. A coordination
language is one that coordinates only the interaction of processes, and leaves the compu-
tational portions of a program to a familiar language from sequential computing. Since a
coordination language is a language, there is a compiler to provide syntactic support and
increase the flexibility of the programming environment. Because of their small size, coor-dination languages are easy to learn. In addition, they support a level of uniformity across

computing languages which can significantly enhance programmer efficiency.
The most well known coordination language is Linda. Linda joined with either C or

Fortran is supported commercially by Scientific Computing Associates, Inc. It has thousands
of users around the world, and it has become one of the common parallel programming
environments in use today.

Linda consists of a small number of powerful operations that may be integrated into a
conventional base language, yielding a dialect that supports parallel programming. Thus, for
example, C and FORTRAN with the addition of the Linda operations become the parallel
programming languages C-Linda and FORTRAN-Linda. Scientific Computing Associates,
Inc. has developed a number of parallel programming systems based on Linda. Each includes
a preprocessor, to translate from a Linda parallel language (C-Linda or FORTRAN-Linda)
into the corresponding base language (C or FORTRAN), possibly with the use of some
automatically-generated auxiliary Linda routines, and kernel libraries to support the Linda
operations at runtime. Portability comes from the consistency of the preprocessor between
systems, while efficiency comes from the use of native C and FORTRAN compilers for
the actual generation of object code, and hardware-specific implementations of the kernels.
Commercial versions of Linda now run well on a broad range of parallel computers, from
shared-memory muultiprocessors, to distributed-nmemory machines such as hypercubes, to
networks of workstations.

In this project we have studied the design of C++-Linda. In our design we do not simply
implement parallelism in an object-oriented language, but introduce parallelism in an object-
oriented way. We found that Linda's virtual shared micimory based technology is especially

I3

well suited for this. An important advantage of Linda is that it provides a tuple-space-based
parallelism in a way that is independent of the base language. Because of this the programs
written in the base language do not have to be re-designed--usually destroying the object-
oriented design--in order to be combined with Linda. Moreover, Linda allows programs to
access tuple space objects through only six operations, providing encapsulation and a well-
defined interface. In fact, even the Linda implementations of non-object oriented languages
introduce benefits of object orientation. This is because Linda's primary data structure,
tuples, can be considered as objects (even though they do not strictly fall within the common
programming-language definitions of "object") providing abstraction and encapsulation. Our
proposed language illustrates how these properties of Linda are combined with an object-
oriented base language to achieve true object-oriented parallelism.

As a part of understanding "object-oriented parallelism" we studied some of the research
projects that are involved in parallel oriented parallel languages. pC++ [5] is a parallel
C++ language largely oriented towards data-parallel programs, and is based on concurrent
aggregates[4] and High Performance Fortran (HPF) ideas. The HPF style in pC++, in] which
explicit data distributions are used to create "distributed objects," contrasts with the task
parallel nature of C++-Linda. While this may fit many parallel programming problems, in
other settings, users have found Linda implementations to be far easier to use effectively
than constrained HPF-based solutions.

Computational C++ (CC++)f3] is another parallel C++ language under current devel-
opment. In CC++, data migration is done at a lower level (current implementations use
PVM[6]), giving CC++ the same feel as message-passing-based systems for C or FORTRAN
parallel programming. Process creation is done through "global pointers" that are obtained
by placing an object explicitly on a different node. In both respects, the CC++ language
places significantly more burden on the programmer than is desirable. Experience from
parallel programming projects using C and FORTRAN suggest that the greater the effort
required from the programmer, the longer and more difficult is the program development
cycle.

While pC++ and CCC++ were the projects studied most carefully in this work, we note
that there are a large number of research efforts under way on parallel object-oriented pro-
gramnming. Mentat[1], CHARM++[7] and COOL[2] are other noteworthy projects.

3 Progress on Specified Objectives

As noted above, our SBIR proposal laid out four principle objectives:

1. Determine the most appropriate base object-oriented computation language;

2. Design a tuple space structure supporting object-oriented programming data abstrac-
tions;

3. Examine the relationship of class abstraction (including the concept of inheritance) to
the tuiple space model; and

4

I

I

I 4. Identify the key issues underlying an efficient implementation of the proposed Linda
parallel object-oriented programming design.

Most of our effort went into meeting the first and last objective. It turned out that
our prototype design for C++-Linda did not involve significant change in the tuple space

I structure from other non-object-oriented Linda systems. As a result, we spent less time
than anticipated on the second and third objectives while still completing all of the specified
work. The end result of this Phase I project is a language design in which a set of high-level
concepts are used to introduce parallelism to C'++ in an very natural and graceful fashion.
At the present time, there are no commercially-available parallel object-oriented languages
(though a few claim to provide some parallel capabilities in an ad hoc way). There are a
few university research projects addressing parallel object-oriented languages, and we have
studied them carefully to assess their technology. Our final prototype design, however, does

not resemble any of these existing projects, but is a marriage of "object orientation" and
Linda's "virtual shared memory methodology."

The remainder of this section describes the progress we made on the listed objectives.

3.1 Base Language

The basic factors that guided our selection of a base language are: the technical suitability of
the language, popularity among software developers, availability of efficient implementations

of compilers, and availability of a suitable front-end parser for our prototype and development
work. After considering Sinalltalk, Eifel and C++ we decided to use C++ as our base
language.

One of the advantages of C++ is that the language has a strong typing system. This is
different from most other object-oriented languages such as Smalltalk that use a weaker type
system. Weak type systems combined with dynamic bindings do have some advantages: for
example, the same program code can be used with variables of different types. However,

we believe that strong static typing helps the development of parallel programs by detecting
typing errors at compile time. This is important because typing errors in parallel program-
mring can be hard to detect at run-time, since programs may simply deadlock. Strong typing
also enables our compiler to do better analysis at compile time and generate more efficient
code.

The l)ol)ularity of C++ is no secret, and it is, in fact, the most widely used object-
oriented programming language among all software developers today. This is evident both
from an examination of the technical literature and trade press, and from the large number
of research projects on parallel C++ languages now underway.

C'++ has inherited efficient compilation techniques from C. There are very good com-
mnercial compilers for (',++ available today. Availability of quality optimizing compilers is

important because it is a requirement for high performance applications. Moreover, because
C++ compilation is so closely tied to C compilation, we expect that our strong base of
knowledge on parallel C should help us with development of suitable techniques for C++.

* 5

I
I

I The front-end of the Linda compiler requires a modified base-language parser to recognize
Linda-specific context and convert it into invocations of base-language functions. In the case
of C-linda, we use the parser from the GNU C compiler for this purpose. Since the GNU
product has now evolved into a combined C/(C++ compiler, we anticipate that we should
be able to adapt the newer version of the GNU parser to our needs for C++-Linda. If this
is possible, it has an additional advantage in that our familiarity with GNU parsers should
cut down the time required to modify it.

ii 3.2 Tuple Space Structure

In the Linda model, the tuple space provides a virtual shared memory. The user interacts
-- with the tuple space explicitly using six tuple transfer and matching operations. In C-Linda

and Fortran-Linda we have implemented a single logical tuple space for process commu-
nication and thread creation. In an object oriented environment, where data access and
visibility are more finely controlled, a single "flat" tuple space may break encapsulation. We
investigated the advantages and disadvantages of creating multiple tuple spaces to support
the stricter scoping and encapsulation provided by C++.

Explicit multiple tuple spaces seemingly provide a clean solution where objects of different
scope can be kept separated. Management of multiple tuple spaces, however, would be

I cumbersome, and such a system could introduce an extra layer of complexity and overhead
to the underlying run-time system. Moreover, we see no advantage to making the multiplicity
of tuple spaces visible to the user; they would only increase complexity without providing
enhanced functionality in most cases. In any event, tuple matching procedures (such as those
already used for efficiency reasons in C-Linda) can help to insure that objects of different
scopes do not interact with one another. This should provide the essential functionality of
(hidden) multiple tuple spaces while retaining the simplicity of a single user-visible tuple
space.

3.3 Incorporation Of Class Abstraction In Tuple Space

Abstraction and inheritance are important characteristics of object-oriented programming,
so the tuple space model must be consistent with these concepts. Abstraction allows the
programmer to conceptualize ideas at a higher level without dealing with underlying com-
plexities. Inheritance enhances this concept by supporting relationships between abstrac-
tions. In designing a parallel language we have to support these features to facilitate parallel
program design within the object model. At first blush, it appeared that we would have
to model explicitly the class hierarchies implied by abstraction and inheritance. Therefore,
we considered the possibility of constructing hierarchies of tuple spaces to match the class
hierarchies. Such a disjoint group of tuple spaces, we thought, might support abstraction
and inheritance in a straightforward manner.

As the language design proceeded, however, we came to a better understanding of the
programmer's environment. While C++-Linda programmers may design apl)lications with

6

I
I

-- hierarchical (classes, they really need not know about the detailed structure of the tul)ie space.
Supporting the hierarchical structure of abstractions within tuple space can and should be
the responsibility of the Linda system. This led us to design a (,++-Linda language using
a single tuple space in which compile-time and link-time analysis will be used to provide
the support needed for abstraction and inheritance without burdening the programmer with
additional complexity.

3.4 Implementation

The implementation issues of C++-Linda can be broadly classified into two categories: basic
software component implementation, and C++ and object-oriented-specific issues.

The basic higher level structure of C++-Linda should be identical to that of C-Linda.
As discussed under Section 3.1, we believe that it will be relatively simple to implement
a suitable front-end parser. As in other Linda systems we will need an analyzer so that

tuples are statically classified for run-time efficiency, and a C++-Linda kernel that provides
run-time support.

The design of the Linda kernel is complicated by the requirement of knowing user defined
types at the kernel level. In previous Linda systems, the kernel needed to know only the built-
in types of the data, since C structures and Fortran common blocks were considered chunks
of bytes. In C(++-Linda, however, we have to interpret objects at kernel level for matching
and copying purposes. This implies that part of the Linda kernel has to be compiled with

the user program with user declarations of classes. Either our front-end parser must collect
the relevant class declarations, or the user will have to put them in a header file; the more
suitable method can only be determined after a prototype development.

We also expect some problems due to differences in implementations of C++ objects. For
example, we will be able to make no assumptions about the structure of an object as each
compiler is free to determine its own format. These problems can be alleviated by wrapping
each object in a descriptive layer as in most distributed object management systems.

* 4 Language Description

We believe that there are two kinds of C++ programmers: programmers who use C++ as an
extension of C, and object-oriented programmers. This project is clearly targeted towards

the latter group; but the programmers of first category are probably in the majority, and
('++-Linda must cater to their requirements as well. Non-object-oriented C++ programmers
often depend heavily on the fact that the C++ language is (almost) a superset of ANSI C. As

one of our design criteria, we have followed this language relationship and made C++-Linda
a superset of C-Linda. All the C-Linda constructs are valid in C++-Linda. When a C++

language feature that is not present in C is involved, we provide new syntax and semantics.
Moreover, we provide a new set of constructs for object-oriented programmers. These

"object-oriented specific" constructs are consistent with the other syntax that we inherited

from C-Linda. In a strict object-oriented design, the programmer deals exclusively with

I 7

I

objects, so the ability of direct manipulation objects is necessary. In this model, tuple space
effectively becomes an "object space," and the programmer creates new processes using
member functions of objects. In this way, we extend the flexibility (ability to program in
object-oriented style or non-object-oriented style) provided by C++ to (++-Linda users.

I 4.1 Data Communication and Synchronization

Linda augments the base language with six simple operations: ino, outO, rdo, eval(),
inpO, an d rdpo. The operation eval() does process creation and is discussed in the next
section.

The basic data structure in Linda is a tuple, an ordered, typed set of data items. For
example,

("tag", 20, x, arr:20)

is a C-Linda tuple with four data fields. The notation in the fourth field refers to the first
20 elements of array arr.

The outO operation causes a tuple to be generated and added to the tuple space. The
inooperation searches for a matching tuple in the tuple space, blocks until it finds one,
copies specified data into the variables specified by the inO, and removes the matching
tuple from the tuple space. The rdo statement is similar to ino except that it does not
remove the matching tuple. The operations iip() and rdpO are similar to inO and rdo,
but they do not block if a matching tuple is not present. They return a status indicating
whether a matching tuple was found.

In C++-Linda, the programmer places an object in tuple space using the construct:

Iobj.out)

where obj is the name of an object.
The member function out 0 takes no arguments and is usually defined by the user. When

the out function is not defined by the user, the compiler generates a default function that
copies all the data members to the tuple space obje t. However, the default function does
not include any pointers that are class members. For example, the default function for the
clIass,

IaS class array {
public:

array(int n) : size(n) { a = new int[n]; }
private:

int *a;
int size;

out(size);

I

I
I

just copies the size of the aggregate pointed to by "a", but not a[]. This is because without
user definitions, the compiler cannot determine the exact shape and size of the data pointed
to by a pointer. The tuple space typically resides in a different address space, and therefore
copying the local address is not very useful. When the user intends to copy data attached
to a class by a pointer member, it is necessary that the member function out () be defined.

The class designer uses Linda syntax in defining the member function outO. This frees
the user from concentrating on the efficiency of the transfer scheme; the user specifies what
(data is to be transferred, and the Linda system does the transfer by the most efficient methodI on the particular architecture.

For example in the class:

class array {
public:

array(int n) : size(n) { a new int[n]; }
out(a:size);
in(?a:) ;

private:
int *a;
int size;

the member function out 0 describes size elements of the array pointed to by "a" as the
(data to be copied into the tuple space object.

Alternatively, the function out can be defined outside the class declaration as in:

array: :out(a:size)

The outO statement, when used on an object, results in instantiating a complete object
(a "tulple object") in the tuple space, but data members not explicitly specified in out()I. will have initial values in the tuple space object (current values are not copied). An outO
statement with no fields directs the compiler to create an object in the tuple space, but not
to copy any data fields from the invocation object to the tuple space object.

The Linda operations ino and rdo can be used to copy data from the tuple space. In
the case of ino the corresponding tuple is removed from the tuple space as well.

C++-Linda uses:

obj.in()

and

obj.rd(

for these operations.
The operation in(o and rdo on objects match only with tuple objects of the same

class.

9

V
I

Again, ino has to be defined as an argument-less member function by the user; wheii not
defilled a default definition that copies all the data members, but not the pointer members,

I is geterated by the compiler. For example the default ino function for the class array is:

in (? n)

i The statement obj. in(o searches for an object of the same class as obj that matches
with data values specified in the ino function, copies data members specified with a
(linda formals), and removes the corresponding object from the tmiple space.

The obj . rd() is similar to to obj . in(), but it does not remove the object from the
tuple space. Definition of rdo is optional, when not defined the compiler defaults to the
field descriptions given in ino.

For example, the user can define the in function as:

array::in(size, ? a:)

to match and copy data from a tuple object that has exactly obj .size elements in its "a"
array.

Note tha.t inO of a class can specify different members than outO. There is also a
restriction that only class members can appear in member functions in(), out (), and rd().

Note that in the above schIeme, we always refer to and manipulate whole objects; parts
of objects are never used. It is possible to match on a part of an object atd copy another
part, but the objects always stay intact. The matching and copying parts of an object is
tied to the class, exteihng the class abstraction to include the Linda operations.

C++-Linda also supports standard C-Linda syntax for out and in. In C-Linda type

syntax, the user has flexibility of working with parts of objects as long as the parts are

I accessible according to (C++ access rules. This style allows us to to use:

Sor out("tag", v, obj.member)

outO("tag", obj.method(args))

When members of objects are directly addressed in this fashion, the member function
out() is ignore(l, and a (C--Linda style tuple is generated in the tuple space.

When an object name, not a part of an object, appears as a field of a C-Linda style out ()
or ino, however, Linda use the member functions out 0 and inO of the corresponding class
to determine the data members to be copied.

Therefore,

out(obj)

has same semantics as,

obj.outo

* 10

4.2 Process creation

Creation of processes (or threads) is a basic requirement of any parallel programming system.
Linda systems (C(and Fortran) provide an eval statement for this purpose. For example,
the (-Linda statement:

eval("tag", foo(foo.argl, foo-arg2), bar(bar-argi))

creates processes to evaluate each of the three fields and immediately returns. (In practice,

"tag" trivially evaluates to itself and only two threads are created for foo() and bar(0.)
The primary thread creation construct of C++-Linda is:

obj.eval()

where obj is an object. The above statement creates an object of same type as obj in
a different node (or thread), copies data specified by outo statement to the newly created

object and cause the evaluation of one or more member functions of new object. The member
functions to evaluate are specified by the user by prepending the keyword eval to function
declarations in the class. If there are multiple functions marked for eval they will execute
concurrently disregarding any race conditions. The functions marked eval must not take
any arguments, and when used to create a thread, the return value of a such function is not
accessible to the program. Therefore, the programmer must arrange the return value to be
stored in a data member.

The following code segment illustrates how the dot product of two vectors can be com-

puted using eval.

class DotProd f
public:

DotProd(int n)

size(n) {
vecI = new float[n]
veci = new float~n];vec2 - new float[n); }

eval void DoDoto; // result = veci . vec2
out(vecl:n, vec2:n);
in(? result);
void InitVec(float *datal, float *data2);

float GetResult() { return result; }
private:I float *vecl;

float *vec2;
float result;
const int size;

I DotProd dpl(100);

I

dpl.InitVec(ptrl, ptr2); II intialize vecl[] and vec2[]
I dpl.eval();

dpi. mo;
r = dpl.GetResulto;

Note that definitions outo, ino, and the keyword eval are required here. The outO
member function specifies the data items and sizes to be copied to the object in the tuple
space, the eval keyword denotes the function to be executed in a different node, and ino

specifies the variable to be copied back as the result of the computation. The vectors veci []
and vec2 [I have not changed and they are not copied back.

The C-Linda constructs also can be used for thread creation.
For example,

eval("tag", foo(argi, arg2))

executes the function foo() in a different thread.
Similarly, one can use:

eval("tag", obj.bar(argl,

to execute a member function barO of an object obj. Here the keyword eval in the

declaration of bar is not necessary.
Also,

n obj.eval()

and

I eval (obj)

are semantically identical.

I 4.3 An Example

Here we expand our code segment for computation of dot product to a parallel matrix

multiplication. In this example, the function Matmul takes two square matrices of size n,
and places the product matrix in a matrix pointed by the third argument. Note that this is

not the most efficient method to do a matrix multiplication C++-Linda. However, this is a
natural extension of the (lot product example, and is shown here for illustration purposes.

class DotProd {
public:

DotProd(int n)
size(n) {

12

Irow-vec = new lan]
col-vec = new float[n];}Ieval void DoDoto; // result = veci . vec2

out(row...vec:n, col-.vec:n, row-num, col-.number);

in(? row~.number, ? col-number, ? result);

void InitVec(float **a, float **b, int row, int col);

float GetRowNumbero f return row-.number;}

float GetColNumber() f return col-number;}I float GetResult() f return result;}
private:

float *row~vec;

float *col-vec;
mnt row-.number;
mnt col-number;

float result;Iconst int size;

I DotProd: :InitVec(float **mata, float **matb, mnt row, mnt col)
:row...number(row), col-number(col)

fr(ti=0i<sie i)row-.vec[i] = ((float *)mata) [row*size+i];

I ~col-.vec[i] - ((float *)matb) Ei*size+col];

DotProd: :DoDot()

float r = 0.0;

I for (mnt i = 0; i < size; ++i)
r += row-.vec Em]*col-yec[i];

result = r;

I Katmul(float **mata, float **matb, float **matr, mnt n)

I DotProd *dp- new DotProd(n);

I 13

I
I

for (int i = O; i < n; ++i) {
for (int j = 0; j < n; j++) {

dp->InitVec(mata, matb, i, j));
dp->eval();I }

}
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; j++) {
dp->ino;
matr [dp->GetRowNumbero ([dp->GetColNumbero]

= dp->GetResulto;

}

I }

5 Compilation

The C++-Linda implementation should be similar to the C-Linda implementation, except
that we will have to add additional facilities for operations on objects. Here we begin with a
description of the C-Linda compiler, and then go on to specifics about how we would build
a C++-Linda compiler.

5.1 C-Linda Compilation

Linda adds very little syntax to the sequential computational language to provide effective
facilities to create and manage parallelism. However, Linda's simplicity, combined with its
powerful associative matching semantics, means that it requires great care and sophisti-
cation to produce effective implementations. A Linda implementation involves three basic
components: a language-dependent pre-compiler, a link-time optimizer, and an architecture-
dependent run-time library. We'll describe now how these fit together to achieve run-time
efficiency. Figure 1 illustrates the compiling and linking process for SCIENTIFIC's C-Linda
product. (The one for Fortran-Linda is similar.) The pre-compiler processes C-Linda source
code to produce pure C modules in which the tuple space operations are replaced by calls to
functions which will, in turn, invoke routines in the run-time library. (These intermediate
functions are generated automatically during optimization at link time.) The pure C mod-
ules are then compiled using the native sequential language compiler. In the course of this
processing, the pre-compiler collects information about tuple space usage which is saved in
a Linda object file along with the base language (C, in this case) object code.

At link-time, the Linda pre-linker analyzes tuple-space accesses over all Linda operations
used in a complete program and fills in the bodies of the intermediate functions mentioned

14

I3~~~iJComrnnnd line: cdc -n sundne chor.cl straw.lo vnzIIIIn.Cr

execufable

(II~~2IIIII)(aki "lir Linda engine')

EshrD shtim

linking

as-SUP~r~doLinda Runtim. Support
linda.0
emain

Figure 1: (-i-nda Structure

15

I above. Essentially, these functions contain only calls to appropriate routines in Linda's run-
time library. Once the intermediate functions have been compiled (again using the native
(' coi)ipiler), the standard system linker is used to produce the final executable. It should
be noted that the linking procedure is fully compatible with construction of multi-language
programs, including those written in C++ and other languages, so long as all the routines
can be linked together under the base-language linking conventions.

The key to Linda's run-time efficiency is its run-time library: both its design and im-
plementation, and the proper choice of run-time library routines for implementations of tie
tuple space operations in a program. In SCIENTIFIC's systems, the run-time library is im-
plemented as a poly-library that is, as a collection of families of run-time routines which can
be used to implement different kinds of tuple space operations. While the Linda associative-
matching protocol is very general, analysis of data collected at compile and link times makes
it possible to select the most appropriate member of the family applicable to each opera-
tion, thereby maximizing run-time efficiency while maintaining exactly the minimal required
amount of generality.

In summary, each Linda operation in the user's program is replaced at compile-time by a
call to a randomly-named and as-yet non-existent procedure. The pre-linker implements each
of these new procedures, by initializing some data structures and invoking the appropriate
routine from the Linda run-time library. Since at link-time there is complete knowledge of
every tuple space access in the program, it is possible to carry out a substantial amount of
analysis and optimization to improve run-time performance.

To begin with, all tuple operations can be divided into groups, based on the sizes, type
signatures, and, where known, constant values in the tuples they manipulate. At run-time,
only the operations within a given class can interact, thus reducing the costs of associative
matching considerably. For example, an in operation involving an 5-field template with a
given type signature can never cause a match with a 4-field tuple or a 5-field tuple with a
different type signature. In addition, the presence of constants often helps to distinguish
among different classes of tuples.

Once tuple operations (and tuple space) are divided into classes, the pre-linker determines
the best way to store and manipulate each class at run-time. Consistently-used constant
fields (always appearing in both tuples and templates in a class) are not retained at run-
time; in effect, tuples are compressed at run-time by pre-matching constants at link-time.
For each tuple class, a particular implementation data structure is selected, according to the
amount and nature of matching that will be required at run-time. The simplest classes can
be implemented using counters or stacks, depending on whether or not any data copying is
required. Other classes are implemented using data structures such as queues, private hash
tables, or distributed hash tables.

5.2 C++-Linda Compilation

C++-Linda compilation is more complicated due to the presence of C++ objects, which
are properly understood and implemented only in a context of C++. For example, to

16

copy (C++ objects in tile C environment, we have to know the internal structure (memory
layout) of objects. As this structure varies from compiler to compiler (C++ standards do
not specify a layout format for objects, and there is no industry standard), and architecture
to architecture (due to alignment requirements, among other things), it is not possible to
write generic libraries for this purpose. Our solution to this problem will be to generate
object manipulation operations in C++ at compile time, and then have the rin-time library
(written in C for portability) call these automatically-written routines for services on objects.
This way the basic steps in compilation remain the same.ICopying an object into the tuple space is different from copying other aggregates (arrays,
Fortran common blocks). We cannot, as we stated before, simply copy a chunk of bytes.
Instead, it involves two steps: instantiation of an object of same class in the tuple space and
copying the required data fields. In C++, only member functions and the functions declared
as "friends" to the class can access private data of a class. So, if we do the data transfer
within the context of C++, the transfer function must be a member or a friend of the class.

Interaction of objects of two different classes that have an inheritance relationship is
another issue. In C++, if the class B inherits from the class A, then it is valid to copy B
to A but not A to B. These asymmetric relationships are new to Linda, and has to be dealt
with using additional care.

In summary, while our implementation of C++-Linda will be able to share a considerable
amount of technology with existing C-Linda implementations, it will still be necessary to
develop some innovative additions to support the essential features of object orientation.

6 Conclusions

We have done a comprehensive study of current research on object-oriented parallel lan-
guages. The base language of the object-oriented programming language is decided by many
factors involving technical, implementation, and commercial issues. We found that object-
oriented properties can be effectively supported within a single logical tuple space. We have
designed a C++ based Linda language that combines the advantages of both object-oriented
technology and portable parallelism. We found that Linda tuple space operations combines
naturally with object orientation. There are some intricacies of C++-Linda that are still un-
resolved, but they are minor in nature and can be effectively resolved only after a prototype
development. We have found a freely available parser to use in our prototype.

References

[11 A.S.Grimshaw. Easy-to-use object oriented parallel programming with mentat. Tech-
nical Report CS-92-32, Department of Computer Science, University of Virginia, Char-
lottesville, 1992.

[2J Rohith Chandra, Anoop Guptha, and John L. Hennessy. Cool: An object-based language
for parallel processing. Cormputer, August 1994.

17

